周见文,龚成文,王文波.临界增长分数阶(p,q)-拉普拉斯方程基态解的存在性[J].数学年刊A辑,2024,45(3):249~258
临界增长分数阶(p,q)-拉普拉斯方程基态解的存在性
The Existence of Ground States for the Fractional(p, q)-Laplacian Equation with Critical Growth
Received:March 28, 2024  Revised:October 18, 2024
DOI:10.16205/j.cnki.cama.2024.0017
中文关键词:  q)-拉普拉斯问题  分数阶(p  临界增长  Nehari流形
英文关键词:actional (p, Q)-Laplacian problem, Critical growth, Neharimanifold
基金项目:云南省兴滇英才青年项目,云南省基础研究重点项目(No.202401AS070024,No.202401AS 070148);云南省基础研究面上项目(No.202401AT070441)
Author NameAffiliation
ZHOU Jianwen School of Mathematics and Statistics, Yunnan University, Kunming 650500,China. 
GONG Chengwen School of Mathematics and Statistics, Yunnan University, Kunming 650501,China. 
WANG Wenbo School of Mathematics and Statistics, Yunnan University, Kunming 650502,China. 
Hits: 18
Download times: 5
中文摘要:
      本文研究如下分数阶(p,q)-拉普拉斯方程:(-△)8pu+(-△)8qu+V(x)(|u|p-2u+|u|q-2u)=λf(x,u)+|u|q*8-2u,x∈RN,其中(-△)8p和(-△)8q是分数阶拉普拉斯算子,00,q*8=Nq/N-sq,是连续函数.假设V和f关于x是渐近周期,作者证明当λ>0充分大时,上述问题存在一个基态解.
英文摘要:
      this article, the authors study the following fractional (p, q)-Laplacian equa-tion:(-)gu + (-A),u + V(a)(lulp-2u + [a|]-2u) = 入f(z, u) + [uj2-2u, α E RN,where (-); and (-) are the fractional Laplacian operators, 0 < s <1 < p
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.