| 何子龙,胡勇.包含√2的四次序模的毕达哥拉斯数[J].数学年刊A辑,2024,45(3):287~296 |
| 包含√2的四次序模的毕达哥拉斯数 |
| Pythagoras Number of Quartic Orders Containing√2 |
| |
| DOI:10.16205/j.cnki.cama.2024.0020 |
| 中文关键词: 平方和 整二次型 毕达哥拉斯数 序模 |
| 英文关键词:Sum of squares Integral quadratic forms pythagoras number Order |
| 基金项目:国家自然科学基金(No.12171223); 广东省基础与应用基础研究基金(No.2021A1515010396) |
|
| Hits: 183 |
| Download times: 107 |
| 中文摘要: |
| 设K是一个包含21/2的四次数域.设O?K是一个满足21/2∈O的序模.作者证明O的毕达哥拉斯数至多是5.这证实了Krásensky,Ra?ka和Sgallová的一个猜想.本文的证明用到了Beli关于二进局部域上二次格的范生成元基理论. |
| 英文摘要: |
| Let K be a quartic number field containing√2 and let OK be an order such that√2∈O.The authors prove that the Pythagoras number of O is at most 5.This confirms a conjecture of Krásensky,Raska and Sgallová.The proof makes use of Beli's theory of bases of norm generators for quadratic lattices over dyadic local fields |
| View Full Text View/Add Comment Download reader |
| Close |