何子龙,胡勇.包含√2的四次序模的毕达哥拉斯数[J].数学年刊A辑,2024,45(3):287~296
包含√2的四次序模的毕达哥拉斯数
Pythagoras Number of Quartic Orders Containing√2
  
DOI:10.16205/j.cnki.cama.2024.0020
中文关键词:  平方和  整二次型  毕达哥拉斯数  序模  
英文关键词:Sum of squares  Integral quadratic forms  pythagoras number  Order
基金项目:国家自然科学基金(No.12171223); 广东省基础与应用基础研究基金(No.2021A1515010396)
Author NameAffiliation
HE Zilong School of Computer Science and Technology,Dongguan University of Technology,Dongguan 523808,Guangdong,China 
HU Yong Department of Mathematics,Southern University of Science and Technology,Shenzhen 518055,Guangdong,China. 
Hits: 47
Download times: 44
中文摘要:
      设K是一个包含21/2的四次数域.设O?K是一个满足21/2∈O的序模.作者证明O的毕达哥拉斯数至多是5.这证实了Krásensky,Ra?ka和Sgallová的一个猜想.本文的证明用到了Beli关于二进局部域上二次格的范生成元基理论.
英文摘要:
      Let K be a quartic number field containing√2 and let OK be an order such that√2∈O.The authors prove that the Pythagoras number of O is at most 5.This confirms a conjecture of Krásensky,Raska and Sgallová.The proof makes use of Beli's theory of bases of norm generators for quadratic lattices over dyadic local fields
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.