徐华博,王利萍.环自同构诱导的广义循环矩阵[J].数学年刊A辑,2024,45(4):423~436
环自同构诱导的广义循环矩阵
Generalized Circulant Matrices Related to Automorphisms
Received:October 07, 2023  Revised:August 26, 2024
DOI:10.16205/j.cnki.cama.2024.0029
中文关键词:  广义循环矩阵  Hopf代数  不动点子环  
英文关键词:Generalized circulant matrix, Hopf algebra, Invariant subring
基金项目:北京市青年拔尖人才项目(No.21351918007); 北京建筑大学研究能力提升计划(No.X22026)
Author NameAffiliation
XU Huabo School of Science, Beijing University of Civil Engineering and Architecture, Beijing 102616, China. 
WANG Liping School of Science, Beijing University of Civil Engineering and Architecture, Beijing 102616, China. 
Hits: 64
Download times: 168
中文摘要:
      设φ是结合环R上阶为n的自同构映射.根据自同构φ,作者引入广义循环矩阵的概念.令Rφ是R关于φ的不动点子环,C_n(φ,R)为R上所有n×n广义循环矩阵构成的集合.作者证明了C_n(φ,R)是自同态环EndRφ(R~n)的子环.此外,还证明了如果R是Rφ上交换的Hopf代数,则C_n(φ,R)也是Rφ上的Hopf代数.
英文摘要:
      The authors introduce the definition of generalized circulant matrices which is the generalization of circulant matrices. Let R be an associative ring with an automorphism ? of order n. They consider the set Cn(?, R) of all the generalized circulant n×n matrices over R for any positive integer n. It is shown that Cn(?, R) is a subring of the endomorphism ring of the R? -module Rn, where R? is the invariant subring of R with respect to ?. Moreover, if R is a commutative Hopf algebra over R?, then Cn(?, R) is also a Hopf algebra over R?.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.