李 丹,杨传富.具有延迟变量及参数边界条件向量微分算子的迹公式[J].数学年刊A辑,2025,46(1):55~64 |
具有延迟变量及参数边界条件向量微分算子的迹公式 |
Trace Formula of Vector Differential Operators with a Retarded Argument and Eigenparameter Boundary Conditions |
Received:June 09, 2024 Revised:November 28, 2024 |
DOI:10.16205/j.cnki.cama.2025.0002 |
中文关键词: 向量微分算子 延迟变量 迹公式 |
英文关键词:Vector differential operator Retarded argument Trace formula |
基金项目:国家自然科学基金 (No.11871031)和南京理工大学研究生教育教学改革课题(No.,KT2024_B08) |
|
Hits: 33 |
Download times: 0 |
中文摘要: |
作者研究赋予特征参数边界条件及延迟变量向量Sturm-Liouville算子的特征值问题,得到了该算子的特征值迹公式.获得的特征值迹公式揭示了特征值与势函数、边界条件矩阵及延迟变量的关系. |
英文摘要: |
In this paper the authors study the eigenvalue problems of vectorial SturmLiouville operators with a retarded argument and eigenparameter boundary conditions, and
obtain the trace formula of eigenvalues for this operator. The obtained trace formula of
eigenvalues reveals the relationship between the potential function, boundary condition matrix, and the retarded argument. |
View Full Text View/Add Comment Download reader |
Close |