LIMIT CYCLES AND BIFURCATION CURVES FORTHE QUADRATIC DIFFERENTIAL SYSTEM(III)$_{\hbox{\tf m}{\boldkey =}{\boldkey 0}}$ HAVING THREEANTI-SADDLES (I)

Citation:

Ye Yanqian.LIMIT CYCLES AND BIFURCATION CURVES FORTHE QUADRATIC DIFFERENTIAL SYSTEM(III)$_{\hbox{\tf m}{\boldkey =}{\boldkey 0}}$ HAVING THREEANTI-SADDLES (I)[J].Chinese Annals of Mathematics B,1996,17(2):167~174
Page view: 0        Net amount: 841

Authors:

Ye Yanqian;

Foundation:

Project supported by the National Natural Science Foundation of China
Abstract: For the quadratic system: $\dot{x}=-y+\de x+lx^2+ny^2, \ \dot{y}=x(1+ax-y)$ under conditions $ -10$ the author draws in the $(a, \de)$ parameter plane the global bifurcation diagram of trajectories around $O(0,0)$. Notice that when $na^2+l<0$ the system has one saddle $N(0, \f{1}{n})$ and three anti-saddles.

Keywords:

Quadrtic systen, Anti-saddle, Bifurcation curve, Limit cycle

Classification:

34C05
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持