DENSENESS OF RADIAL-BASIS FUNCTIONS IN $\hbox{\tfL}^{\boldkey 2}{\boldkey (}\hbox{\tf R}^{\boldkey n}{\boldkey )}$ AND ITSAPPLICATIONS IN NEURAL NETWORKS

Citation:

Chen Tianping,Chen Hong.DENSENESS OF RADIAL-BASIS FUNCTIONS IN $\hbox{\tfL}^{\boldkey 2}{\boldkey (}\hbox{\tf R}^{\boldkey n}{\boldkey )}$ AND ITSAPPLICATIONS IN NEURAL NETWORKS[J].Chinese Annals of Mathematics B,1996,17(2):219~226
Page view: 0        Net amount: 856

Authors:

Chen Tianping; Chen Hong

Foundation:

Project supported by the National Natural Science Foundation of China
Abstract: The authors discuss problems of approximation to functions in $L^2(R^n)$ and operators from $L^2(R^{n_1})$ to $L^2(R^{n_2})$ by Radial-Basis Functions. The results obtained solve the problem of capability of RBF neural networks, a basic problem in neural networks.

Keywords:

Radial-basis function, Neural networks, Approximation, Operator,$L^2(R^N)$ norm

Classification:

41A20
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持