HOMOCLINIC ORBITS FOR LAGRANGIAN SYSTEMS

Citation:

Wu Shaoping.HOMOCLINIC ORBITS FOR LAGRANGIAN SYSTEMS[J].Chinese Annals of Mathematics B,1996,17(2):245~256
Page view: 0        Net amount: 661

Authors:

Wu Shaoping;

Foundation:

Project supported by the National Natural Science Foundation of China, and the Zhejiang Natural Science Foundation
Abstract: The existence of at least two homoclinic orbits for Lagrangian system (LS) is proved, where the Lagrangian $L(t,x,y)= \frac 12 \Sigma a_{ij}(x)y_iy_j - V(t,x)$, in which the potential $V(t,x)$ is globally surperquadratic in $x$ and $T$-periodic in $t.$ The Concentration-Compactness Lemma and Mini-max argument are used to prove the existences.

Keywords:

Lagrangian systerm, Superquadratic growth, Concentration-compactness,Minimax argument

Classification:

58F05, 58E20, 34C25
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持