DIRECT EXPANSIONS FOR THE DISTRIBUTION FUNCTIONS AND DENSITY FUNCTIONS OF χ2-TYPE AND t-TYPE DISTRIBUTED RANDOM VARIABLES

Citation:

Zheng Zukang.DIRECT EXPANSIONS FOR THE DISTRIBUTION FUNCTIONS AND DENSITY FUNCTIONS OF χ2-TYPE AND t-TYPE DISTRIBUTED RANDOM VARIABLES[J].Chinese Annals of Mathematics B,1996,17(3):289~300
Page view: 0        Net amount: 842

Authors:

Zheng Zukang;

Foundation:

Project supported by the Doctoral Programme Foundation and the National Natural Science Foundation of China
Abstract: Suppose that $Z_1, Z_2, \cdots, Z_n$ are independent normal random variables with common mean $\mu$ and variance $\si^2.$ Then $S^2=\f{\sum_{i=1}^n \limits (Z_i-\ov Z)^2 }{\si^2}$ and $T=\f{\sqrt{n-1}\cdot \ov Z}{\sqrt{S^2/n}}$ have $\chi^2_{n-1}$ distribution and $t_{n-1}$ distribution respectively. If the normal assumption fails, there will be the remainders of the distribution functions and density functions. This paper gives the direct expansions of distribution functions and density functions of $S^2$ and $T$ up to $o(n^{-1})$. They are more intuitive and convenient than usual Edgeworth expansions.

Keywords:

Edgeworth expansion, Distribution function, Density function

Classification:

62E20, 60F05
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持