LUSTERNIK-SCHNIRELMANN CATEGORY AND EMBEDDING FINITECOVERING MAPS, PRINCIPAL G-BUNDLES INTO BUNDLES

Citation:

Liu Luofei.LUSTERNIK-SCHNIRELMANN CATEGORY AND EMBEDDING FINITECOVERING MAPS, PRINCIPAL G-BUNDLES INTO BUNDLES[J].Chinese Annals of Mathematics B,1996,17(3):317~324
Page view: 0        Net amount: 767

Authors:

Liu Luofei;

Foundation:

Project supported by the National Natural Science %Foundation of China
Abstract: The author proves several embedding theorems for finite covering maps, principal $G$-bundles into bundles. The main resultsare 1. Let $\pi :E\to X$ be a finite covering map, and $X$ a connected locally path-connected paracompact space. If cat$\, X\leq k$, then the finite covering space $\pi :E\to X$ can be embedded into the trivial real $k$-plane bundle. 2. Let $\pi :E\to X$ be a principal $G$-bundle over a paracompact space. If there exists a linear action of $G$ on $F$ ($F=\bold R$ or $\bold C$) and cat$\, X\leq k$, then $\pi :E\to X$ can be embedded into $\xi_1\oplus\cdots\oplus\xi_k$ for any $F$-vector bundles $\xi_i$, $i=1,\cdots ,k$.

Keywords:

Lusternik-Schnirelmann category, Finite covering map, Principal $G$-bundle

Classification:

55M30, 57M12, 57S17, 55R25
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持