GLOBAL DYNAMICS OF DISSIPATIVE GENERALIZED KORTEWEG-DE VRIES EQUATIONS

Citation:

You Yuncheng.GLOBAL DYNAMICS OF DISSIPATIVE GENERALIZED KORTEWEG-DE VRIES EQUATIONS[J].Chinese Annals of Mathematics B,1996,17(4):389~402
Page view: 0        Net amount: 739

Authors:

You Yuncheng;

Foundation:

the National Natural Science Foundation of China
Abstract: This work deals with the dissipative generalized Korteweg-de Vries (gKdV) equations of the form $$\align &u_t + u^2 u_x + u_{xxx}-bu_{xx}+ ru = f,\quad t\geq 0, \\ &u(0,x) = u_0(x)\in V = H_{2\pi}^2, \endalign$$ with periodic boundary conditions. It is proved that there exists an inertial manifold for the semiflow generated by this equation in space $V$. Since such a manifold is finite dimensional, positively invariant, and exponentially attracting of all the solution trajectories, the long-time dynamics of the dissipative gKdV equations are determined by a finite number of modes without the soliton phenomena.

Keywords:

Dissipative generalized KdV equation, Global dynamics, Inertial manifold,Soliton

Classification:

35B40, 35Q53, 58F12, 76B15
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持