BERRY-ESSEEN BOUNDS OF ERROR VARIANCE ESTIMATIONIN PARTLY LINEAR MODELS

Citation:

Gao Jiti,Hong Shengyan,Liang Hua.BERRY-ESSEEN BOUNDS OF ERROR VARIANCE ESTIMATIONIN PARTLY LINEAR MODELS[J].Chinese Annals of Mathematics B,1996,17(4):477~490
Page view: 0        Net amount: 851

Authors:

Gao Jiti; Hong Shengyan;Liang Hua

Foundation:

the Probab. Lab., Inst. of App. Math., Chinese Academy of Sciences and National Natural Science Foundation of China
Abstract: Consider the regression model $Y_i=x_i^\tau\beta+g(t_i)+\varepsilon_i$ for $ i=1,\cdots, n.$ Here $(x_i, t_i)$ are known and nonrandom design points and $\E_i$ are i.i.d. random errors. The family of nonparametric estimates $\hat g_n(\cdot)$ of $g(\cdot)$ including some known estimates is proposed. Based on the model $Y_i=x_i^\tau\beta+\hat g_n(t_i)+\varepsilon_i,$ the Berry-Esseen bounds of the distribution of the least-squares estimator of $\beta$ are investigated.

Keywords:

Partly linear model, Least-squares estimate, Berry-Esseen bounds

Classification:

62F99 65G07, 62J02
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持