|
| |
MEAN APPROXIMATION OF A PERIODIC FUNCTION BYTHE PARTIAL SUMS OF ITS FOURIER SERIES |
| |
Citation: |
SUN YONGSHENG.MEAN APPROXIMATION OF A PERIODIC FUNCTION BYTHE PARTIAL SUMS OF ITS FOURIER SERIES[J].Chinese Annals of Mathematics B,1980,1(2):273~282 |
Page view: 0
Net amount: 826 |
Authors: |
SUN YONGSHENG; |
|
|
Abstract: |
Given a sequence of positive real numbers \[{\varepsilon _0},{\varepsilon _1},...,{\varepsilon _n},...\] which satisfy the
conditions \[{\varepsilon _v} \to 0,{\varepsilon _v} - {\varepsilon _{v + 1}} \ge 0,{\varepsilon _v} - 2{\varepsilon _{v + 1}} + {\varepsilon _{v + 2}} \ge 0\] for v =0, 1, 2, ..., and a class L(s)
of 2pi-periodic, L-integrable functions f(x) such that \[{E_n}{(f)_L} \le {\varepsilon _n}(n = 0,1,2,...)\],
where \[{E_n}{(f)_L}\] is the best mean approximation of f(x) by trigonometrical polynomials
of degree ≤n Let \[{S_n}(f)\] be the n-th partial sum of the Fourier series of f(x). It’s
known that Oskolkov has proved \[\mathop {\sup }\limits_{f \in L(\varepsilon )} ||f - {S_n}{(f)_L}|| = \sum\limits_{v = n}^{2n} {\frac{{{\varepsilon _n}}}{{v - n + 1}}} \] where \[||f|{|_L} = \int_0^{2\pi } {|f(x)|} dx\] Oskolkov asked whether there is a single function \[{f_0}(x) \in L(s)\] for which the above relation is satisfied for all n, In this paper the following result is obtained.
Theorem Let \[L(\varepsilon )\] be a class of 2pi-periodic, L-integrable functions as giyen above, then there exists a funotion \[{f_0}(x) \in L(\varepsilon )\] such that \[{{\tilde f}_0}(x) \in L(\varepsilon )\] and
\[\begin{array}{l}
\overline {\mathop {\lim }\limits_{n \to \infty } } \frac{{{{\left\| {{f_0} - {S_n}({f_0})} \right\|}_L}}}{{\sum\limits_{v = n}^{2n} {\frac{{{\varepsilon _n}}}{{v - n + 1}}} }} \ge C > 0\\overline {\mathop {\lim }\limits_{n \to \infty } } \frac{{{{\left\| {{{\tilde f}_0} - {S_n}({{\tilde f}_0})} \right\|}_L}}}{{\sum\limits_{v = n}^{2n} {\frac{{{\varepsilon _n}}}{{v - n + 1}}} }} \ge C > 0
\end{array}\]
where C is an absolute constant. Some generalizations of the theorem are given. |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|