SIMULTANEOUS BEST RATIONAL AlPPROXIMATION

Citation:

Shi Yingguang.SIMULTANEOUS BEST RATIONAL AlPPROXIMATION[J].Chinese Annals of Mathematics B,1980,1(3-4):477~484
Page view: 0        Net amount: 1210

Authors:

Shi Yingguang;
Abstract: In this paper we discuss the problem of simulta-neons best rational approximation to a sequence of functions \({f_1},{f_2}, \cdots \in C[a,b]\), i. e. We wish to minimize the expression \({\left\| {{{\left\{ {\sum\limits_{j = 1}^\infty {{\lambda _j}{{\left| {{f_j} - R} \right|}^p}} } \right\}}^{\frac{1}{p}}}} \right\|_\infty }\) ,where \(R \in R_m^n[a,b],1 \le p < \infty ,{\lambda _j} > 0,\sum\limits_{j = 1}^\infty {{\lambda _j}} = 1\). For such a problem we have established the main theorems in the Chebyshey theory, which include the theorems of existence, alternation, de La Vallee Poussin, uniqueness, strong uniqueness as well as that of continuity of the best approximation operator.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持