ON THE INITIAL BOUNDARY VALUE PROBLEMS FORQUASILINEAR SYMMETRIC HYPERBOILC SYSTEMAND THEIR APPLICATIONS

Citation:

Chen Shuxing.ON THE INITIAL BOUNDARY VALUE PROBLEMS FORQUASILINEAR SYMMETRIC HYPERBOILC SYSTEMAND THEIR APPLICATIONS[J].Chinese Annals of Mathematics B,1980,1(3-4):511~521
Page view: 0        Net amount: 1392

Authors:

Chen Shuxing;
Abstract: In this paper we discuss the initial-boundary value problems for qnasilinear gymmetrio hyperbolic system and their applications. It is proved that Theorem 1, Suppose \(\Omega \) is a bomded domain, its boundary \(\partial \Omega \) is sufficient smooth. We consider the quasilinear symmetric hyperbolic system \[\sum\limits_{i = 0}^n {{a^i}(x,u)\frac{{\partial u}}{{\partial {x_i}}}} = f(x,u)\] in the domain \([0,h] \times \Omega \). The initial-boimda/ry conditions \[\begin{array}{l} {\left. u \right|_{{x_0} = 0}} = 0\{\left. {Mu} \right|_{\partial \Omega }} = 0 \end{array}\] are given. If \({a^0}\) is positive definite,\(\partial \Omega \) is noncharaGieristic, \(Mu = 0\) is stable admissible and all coefficients are smooth enough, some of derivatives of \(f(x,0)\) at \({{x_0} = 0}\) vanish., then the smooth solution of (1), (2) uniquely exists, if h is sufficiently small. Theorem 2. We consider the semi-Unear symmetric hyperbolic system \[\sum\limits_{i = 0}^n {{a^i}(x,u)\frac{{\partial u}}{{\partial {x_i}}}} = f(x,u)\] The initial-boundary conditions are still \[\begin{array}{l} {\left. u \right|_{{x_0} = 0}} = 0\{\left. {Mu} \right|_{\partial \Omega }} = 0 \end{array}\] If the bowndary \(\partial \Omega \) is a regular characteristic, \(Mu = 0\) is normally admissible and other conditions is the same as that in the theorem 1., then the smooth solution of (3), (4) still wriiquely exists if hM sufficiently small.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持