THE AVERAGE NUMBER OF REAL ROOTS OF ARANDOM ALGEBRAIC EQUATION

Citation:

Luo Zhenhua.THE AVERAGE NUMBER OF REAL ROOTS OF ARANDOM ALGEBRAIC EQUATION[J].Chinese Annals of Mathematics B,1980,1(3-4):541~544
Page view: 0        Net amount: 1246

Authors:

Luo Zhenhua;
Abstract: The average number of real roots of the random algebraio equation \[{F_n}(\omega ,t) = {a_0}(\omega ) + {a_2}(\omega )t + \cdots + {a_n}(\omega ){t^{n - 1}} = 0\] has been estimated by Kao, M.[5] for the case where the \({a_i}(\omega ){\kern 1pt} {\kern 1pt} (i = 0,1, \cdots ,n - 1)\) are indenpendent Gaussian random variables with mean 0 and standard deviation 1. Let \(E{N_F}(\omega )\) be the average: aiumber of real roots of \({F_n}(\omega ,t)\) , Kao's main result is \[E{N_F}(\omega ) \le \frac{2}{\pi }{\rm{In}}n + \frac{{14}}{\pi }\] Later in (8), Stevens obtained \[\frac{2}{\pi }{\rm{In}}n - 0.6 < E{N_F}(\omega ) < \frac{2}{\pi }{\rm{In}}n + 1.4\]. The purpose of this paper is to prove the following theorem. Theorem. Let \[{F_n}(\omega ,t) = {a_0}(\omega ) + {a_2}(\omega )t + \cdots + {a_n}(\omega ){t^{n - 1}} = 0\] be a random algebraic equation where \({a_i}(\omega ){\kern 1pt} {\kern 1pt} (i = 0,1, \cdots ,n - 1)\) are indenpendent Gaussian random variables with mean 0 and standard deviation 1, Then for all \(n \ge 1\), \[\frac{2}{\pi }{\rm{In}}n \le E{N_F}(\omega ) \le \frac{2}{\pi }{\rm{In}}n + 1.2372771\].

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持