Sample Numbers and Optimal Lagrange Interpolation of Sobolev Spaces Wr1*

Citation:

Guiqiao XU,Zehong LIU,Hui WANG.Sample Numbers and Optimal Lagrange Interpolation of Sobolev Spaces Wr1*[J].Chinese Annals of Mathematics B,2021,42(4):519~528
Page view: 651        Net amount: 830

Authors:

Guiqiao XU; Zehong LIU;Hui WANG

Foundation:

National Natural Science Foundation of China (Nos. 11871006,11671271).
Abstract: This paper investigates the optimal recovery of Sobolev spaces Wr1[?1, 1], r ∈ N in the space L1[?1, 1]. They obtain the values of the sampling numbers of Wr1[?1, 1] in L1[?1, 1] and show that the Lagrange interpolation algorithms based on the extreme points of Chebyshev polynomials are optimal algorithms. Meanwhile, they prove that the extreme points of Chebyshev polynomials are optimal Lagrange interpolation nodes.

Keywords:

Worst case setting, Sampling number, Optimal Lagrange interpolation nodes, Sobolev space

Classification:

41A05, 41A25
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持