THE VOLUME AND TOPOLOGY OF A COMPLETE REIMANNIAN MANIFOLD

Citation:

ZHAN Huashui,SHEN Zhongmin.THE VOLUME AND TOPOLOGY OF A COMPLETE REIMANNIAN MANIFOLD[J].Chinese Annals of Mathematics B,2001,22(1):85~92
Page view: 0        Net amount: 856

Authors:

ZHAN Huashui; SHEN Zhongmin
Abstract: It is conjectured that the manifold with nonnegative Ricci curvature and weaked bounded geometry is of finite topological type, if $$\lim_{r \rightarrow \infty} \frac{vol[B(p,r)]}{r^2} = 0$$. The paper partially solves this conjecture. In the same time, the paper also discusses the volume growth of a manifold with asymptotically nonnegative Ricci curvature.

Keywords:

Ricci curvature, Weak bounded geometry, Finite topological type, Volume growth

Classification:

53C20
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持