${\rm SO}(n)$-Invariant Special Lagrangian Submanifolds of ${\mathbb C}^{n+1}$ with Fixed Loci

Citation:

Robert L. BRYANT.${\rm SO}(n)$-Invariant Special Lagrangian Submanifolds of ${\mathbb C}^{n+1}$ with Fixed Loci[J].Chinese Annals of Mathematics B,2006,27(1):95~112
Page view: 1242        Net amount: 1026

Authors:

Robert L. BRYANT;

Foundation:

Project supported by Duke University via a research grant, the NSF via DMS-0103884, the Mathematical Sciences Research Institute, and Columbia University.
Abstract: Let~${\rm SO}(n)$ act in the standard way on~${\mathbb C}^n$ and extend this action in the usual way to~${\mathbb C}^{n+1} = {\mathbb C}\oplus{\mathbb C}^n$. It is shown that a nonsingular special Lagrangian submanifold~$L\subset{\mathbb C}^{n+1}$ that is invariant under this~${\rm SO}(n)$-action intersects the fixed~${\mathbb C} \subset{\mathbb C}^{n+1}$ in a nonsingular real-analytic arc~$A$ (which may be empty). If~$n>2$, then $A$ has no compact component. Conversely, an embedded, noncompact nonsingular real-analytic arc~$A\subset{\mathbb C}$ lies in an embedded nonsingular special Lagrangian submanifold that is ${\rm SO}(n)$-invariant. The same existence result holds for compact~$A$ if~$n=2$. If~$A$ is connected, there exist $n$ distinct nonsingular ${\rm SO}(n)$-invariant special Lagrangian extensions of~$A$ such that any embedded nonsingular ${\rm SO}(n)$-invariant special Lagrangian extension of~$A$ agrees with one of these~$n$ extensions in some open neighborhood of~$A$. The method employed is an analysis of a singular nonlinear \textsc{pde} and ultimately calls on the work of G\'erard and Tahara to prove the existence of the extension.

Keywords:

Calibrations, Special Lagrangian submanifolds

Classification:

53C42, 35A20
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持