On the Uniqueness of Heat Flow of Harmonic Maps and Hydrodynamic Flow of Nematic Liquid Crystals

Citation:

Fanghua LIN,Changyou WANG.On the Uniqueness of Heat Flow of Harmonic Maps and Hydrodynamic Flow of Nematic Liquid Crystals[J].Chinese Annals of Mathematics B,2010,31(6):921~938
Page view: 1993        Net amount: 1274

Authors:

Fanghua LIN; Changyou WANG;

Foundation:

the National Science Foundations (Nos. 0700517, 1001115).
Abstract: For any $n$-dimensional compact Riemannian manifold $(M,g)$ without boundary and another compact Riemannian manifold $(N,h)$, the authors establish the uniqueness of the heat flow of harmonic maps from $M$ to $N$ in the class $C([0,T), W^{1,n})$. For the hydrodynamic flow $(u,d)$ of nematic liquid crystals in dimensions $n=2$ or $3$, it is shown that the uniqueness holds for the class of weak solutions provided either (i) for $n=2$, $u\in L^\infty_t L^2_x\cap L^2_tH^1_x$,\ $\nabla P\in L^{\frac43}_tL^{\frac43}_x$, and $\nabla d\in L^\infty_t L^2_x\cap L^2_t H^2_x$; or (ii) for $n=3$, $u\in L^\infty_tL^2_x\cap L^2_tH^1_x\cap C([0,T), L^n)$, $P\in L^{\frac{n}2}_t L^{\frac{n}2}_x$, and $\nabla d\in L^2_tL^2_x\cap C([0,T), L^{n})$. This answers affirmatively the uniqueness question posed by Lin-Lin-Wang. The proofs are very elementary.

Keywords:

Hydrodynamic flow, Harmonic maps, Nematic liquid crystals, Uniqueness

Classification:

35K55
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持