On the Payne-Schaefer Conjecture About an Overdetermined Boundary Problem of Sixth Order

Citation:

Changyu XIA.On the Payne-Schaefer Conjecture About an Overdetermined Boundary Problem of Sixth Order[J].Chinese Annals of Mathematics B,2026,(1):213~228
Page view: 202        Net amount: 106

Authors:

Changyu XIA;
Abstract: This paper considers overdetermined boundary value problems for sixth-order elliptic equations. The author gives a complete proof of the Payne–Schaefer conjecture, which asserts that if a solution to a certain sixth-order equation satisfies two homogeneous boundary conditions on a smooth domain, then the domain must be a ball. The proof relies on integral identities, the Bennett identity, and a moving plane argument.

Keywords:

Overdetermined problem  Payne-Schaefer conjecture  Bennett theorem  Euclidean ball

Classification:

35N25, 35N30, 35R01
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持