The New Gap Theorem for Certain Riemannian Manifolds

Citation:

Juan LI,Hongwei XU,Entao ZHAO.The New Gap Theorem for Certain Riemannian Manifolds[J].Chinese Annals of Mathematics B,2026,(1):251~270
Page view: 211        Net amount: 107

Authors:

Juan LI; Hongwei XU;Entao ZHAO

Foundation:

National Natural Science Foundation of China (Nos. 12471051, 12071424, 12171423)
Abstract: In this paper, the authors investigate the geometric rigidity of Riemannian manifolds under suitable curvature restrictions. They prove a new gap theorem: if a locally conformally flat manifold of dimension n ≥ 5 has constant scalar curvature and its Ricci tensor is sufficiently close to that of a space form in Ln/2 norm, then the manifold is isometric to the space form. The proof uses the refined Kato inequality and analysis of the Cotton tensor.

Keywords:

Gap theorems  Locally conformally flat manifolds  Ricci curvature  Constant scalar curvature  Cotton tensor

Classification:

53C20, 53C25
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持