|
| |
The Initial Value Problems and Nonlinear Boundary Value Problems for aClass of the Second order Quasilinear Parabolio Systems |
| |
Citation: |
Yan Ziqian.The Initial Value Problems and Nonlinear Boundary Value Problems for aClass of the Second order Quasilinear Parabolio Systems[J].Chinese Annals of Mathematics B,1982,3(1):67~78 |
Page view: 909
Net amount: 854 |
Authors: |
Yan Ziqian; |
|
|
Abstract: |
In this paper initial value problems and nonlinear mixed boundary value problems for the quasilinear parabolic systems below
$\[\frac{{\partial {u_k}}}{{\partial t}} - \sum\limits_{i,j = 1}^n {a_{ij}^{(k)}} (x,t)\frac{{{\partial ^2}{u_k}}}{{\partial {x_i}\partial {x_j}}} = {f_k}(x,t,u,{u_x}),k = 1, \cdots ,N\]$
are discussed.The boundary value conditions are
$\[{u_k}{|_{\partial \Omega }} = {g_k}(x,t),k = 1, \cdots ,s,\]$
$\[\sum\limits_{i = 1}^n {b_i^{(k)}} (x,t)\frac{{\partial {u_k}}}{{\partial {x_i}}}{|_{\partial \Omega }} = {h_k}(x,t,u),k = s + 1, \cdots N.\]$
Under some "basically natural" assumptions it is shown by means of the Schauder type estimates of the linear parabolic equations and the embedding inequalities in Nikol'skii spaces,these problems have solutions in the spaces $\[{H^{2 + \alpha ,1 + \frac{\alpha }{2}}}(0 < \alpha < 1)\]$.For the boundary value problem with $\[b_i^{(k)}(x,t) = \sum\limits_{j = 1}^n {a_{ij}^{(k)}} (x,t)\cos (n,{x_j})\]$ uniqueness theorem is proved. |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|