On the Springer's Conjecture of the Coefficients of Univalent Meromorphic Functions

Citation:

Yao Biyun.On the Springer's Conjecture of the Coefficients of Univalent Meromorphic Functions[J].Chinese Annals of Mathematics B,1982,3(1):85~88
Page view: 816        Net amount: 802

Authors:

Yao Biyun;
Abstract: Let $\sigma$ denote the family of univalent functions $\[F(z) = z + \sum\limits_{n = 1}^\infty {\frac{{{b_n}}}{{{z^n}}}} \]$ in l< |z| <\infty if G(w) is the inverse of a function $F(z) \in \sigma ^'$, the expansion of G(w) in some neighborhood of w=\infty is $\[G(w) = w - \sum\limits_{n = 1}^\infty {\frac{{{B_n}}}{{{w^n}}}} \]$ It is well known that |B_1|\leq 1 for any F(z) \in \sigma ^'. Springer^[1] proved that | B_3| \leq 1 and conjectured that $\[|{B_{2n - 1}}| \le \frac{{(2n - 2)!}}{{n!(n - 1)!}}{\rm{ }}(n = 3,4, \cdots )\]$ (1) Kubota^[2] proved (1) for n=3, 4, 5. Schober^[3] proved (1) for n = 6, 7. Ren Fuyao[4,5] has verified (1) for n=6, 7, 8. In this article we are going to verify (1) for n=9.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持