|
| |
A Hypothesis Testing Problem in the Linear Model (in English) |
| |
Citation: |
Zhang Yaoting,Bian Guorui.A Hypothesis Testing Problem in the Linear Model (in English)[J].Chinese Annals of Mathematics B,1982,3(2):153~158 |
Page view: 886
Net amount: 988 |
Authors: |
Zhang Yaoting; Bian Guorui |
|
|
Abstract: |
本文讨论了多元线性模型中的一个假设检验问题。假定
$\[{E(Y) = A\theta + B\eta }\]$
$Y的各行独立、正太、同协差阵V$
现在要检验假设H_0:存在矩阵C使$\theta= C\eta$ 是否成立。首先可将问题化为法式的形式,对法式分两种情况进行讨论:
(一)$[V = {\sigma ^2}I,{\sigma ^2}\]$未知,此时可求出 \theta,C,\sigma ^2的最大似然估计(当 H^0成立时)是
$[\left\{ {\begin{array}{*{20}{c}}
{\hat \theta = {{({I_p} + \hat C'\hat C)}^{ - 1}}({y_1} + \hat C'{y_2})}\{\hat C = - {{({{T'}_{22}})}^{ - 1}}{{T'}_{12}}}\{{{\hat \sigma }^2} = \frac{1}{{nk}}(\sum\limits_{j = p + 1}^{p + q} {\lambda _j^* + \sum\limits_{j = 1}^k {{d_j})} } }
\end{array}} \right.\]$
其中y_1,y_2是法式
$[E\left( {\begin{array}{*{20}{c}}
{{y_1}}\{{y_2}}\{{y_3}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
\theta \\eta \0
\end{array}} \right)\begin{array}{*{20}{c}}
p\q\{n - (p + q)}
\end{array}\]$
中的资料阵y_1,y_2,d_1,\cdots,d_k是y^'_3y_3的全部特征根,$[\lambda _1^* \ge \cdots \lambda _{p + q}^*\]$是$[\left( {\begin{array}{*{20}{c}}
{{y_1}}\{{y_2}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{{y'}_1}}&{{{y'}_2}}
\end{array}} \right)\]$的全部特征根,相应特征向量依$\lambda^*_i$的大小顺序从左到右排成矩阵T,T的分块子阵是T_ij,即
$[T = \left( {\begin{array}{*{20}{c}}
{{T_{11}}}&{{T_{12}}}\{{T_{21}}}&{{T_{22}}}
\end{array}} \right)\begin{array}{*{20}{c}}
p\q
\end{array}\]$
对H_0的广义似然比检验是
$[\Lambda = \sum\limits_{j = p + 1}^k {{\lambda _j}/\sum\limits_{j = 1}^k {{d_j}} } \]$
$=lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$是$y_1^'y_1+y_2^'y_2$的全部特征根。
(二)一般情形V未知,此时 \theta,C的估计量同前,可求出
$[\hat V = \frac{1}{n}({y_2}^\prime {T_{22}}{T_{22}}^\prime {y_2} + {y_2}^\prime {y_2})\]$
H_0相应的Lawley不变检验是
$[\sum\limits_{j = p + 1}^k {{\beta _j}} \ge {\alpha _1}\]$
其中 $\beta_1 \geq \beta_2 \geq \cdots \beta_k$是$y'_1y_1+y'_2y_2$的相应于$y'_sy_s$的全部特征根。
有关$\Lambda \$的以及$[\sum\limits_{j = p + 1}^k {{\beta _j}} \]$的极限分布将在另外的文章中讨论。 |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|