A Connection Between the Logarithmic Capacity and the Sequence of theAnalytical Function

Citation:

Mo Guoduan.A Connection Between the Logarithmic Capacity and the Sequence of theAnalytical Function[J].Chinese Annals of Mathematics B,1982,3(2):189~194
Page view: 878        Net amount: 702

Authors:

Mo Guoduan;
Abstract: Let E be a bounded closed set, d(E) be the logarithmic capacity of E. If A is any bounded set, then $[d(A) = \mathop {\sup }\limits_{E \in A} d(E)\]$ For each $Z_0 \in E$, and $\delta >0$, let $[\Delta = \Delta _{{Z_0}}^\delta = CE \cap (|Z - {Z_0}| < \delta )\]$ where CE is complement of E, then \Delta is an open set. By [{\bar \Delta ^0}\] we denote the interior of the closure A of A. Clearly,$\Delta \subset [{\bar \Delta ^0}\]$ and $d(\Delta) \leq d([{\bar \Delta ^0}\])$, and there exists an open set D such that d(D) 0, the equation $d(\Delta)=d([{\bar \Delta ^0}\])$ holds.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持