|
| |
The Stability of Systems of Neutral Type with Small Time Lag |
| |
Citation: |
Si Ligeng.The Stability of Systems of Neutral Type with Small Time Lag[J].Chinese Annals of Mathematics B,1982,3(2):203~208 |
Page view: 883
Net amount: 660 |
Authors: |
Si Ligeng; |
|
|
Abstract: |
In this paper, we have obtained the equivalence theorems of stability between the system of differential equations
$[{\dot x_i}(t) = \sum\limits_{j = 1}^n {{a_{ij}}{x_j}(t)} + \sum\limits_{j = 1}^n {{b_{ij}}{x_j}(t)} + \sum\limits_{j = 1}^n {{c_{ij}}{{\dot x}_j}(t)} (i = 1,2, \cdots ,n)\]$
and the system of differential-difference equations of neutral type
$[{\dot x_i}(t) = \sum\limits_{j = 1}^n {{a_{ij}}{x_j}(t)} + \sum\limits_{j = 1}^n {{b_{ij}}{x_j}(t - {\Delta _{ij}})} + \sum\limits_{j = 1}^n {{c_{ij}}{{\dot x}_j}(t - {\Delta _{ij}})} (i = 1,2, \cdots ,n)\]$
where a_ij, b_ij, c_ij are given constants, and \Delta_ij are non-negative real constants. |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|