A Remark on the Condition of Integrability in Quadratic Mean for the SecondOrder Random Processes

Citation:

Wang Zhenpeng.A Remark on the Condition of Integrability in Quadratic Mean for the SecondOrder Random Processes[J].Chinese Annals of Mathematics B,1982,3(3):349~352
Page view: 873        Net amount: 808

Authors:

Wang Zhenpeng;
Abstract: In quite a few publications(eg.[1,2,3])there is the theorem $[\int_a^b {\xi (t)dt(in{\rm{ q}}{\rm{.m}}{\rm{.)}}} \]$exists if and only if $[(R)\int_a^b {\int_a^b {\Gamma (s,t)dsdt} } \]$exists, where $\xi(t),t \in [a,b]$ is a second order random process and $\Gamma(s,t)=E[\xi(s)\overline {\xi (t)}],s,t \in [a,b]$. However,the necessary condition does not hold,that is to say:the integral in q.m. $\int_a^b {\xi(t)dt}$exists but the Riemann integral (r)\int_a^n{\int_a^b{\Gamma(s,t)dsdt}} can not exist.A counter example is constructed to substantiate this point.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持