Automorphisms of the Projective Quaternion Unimodular Group of twoDimensions

Citation:

Wan Zhexian,Yang Jingen.Automorphisms of the Projective Quaternion Unimodular Group of twoDimensions[J].Chinese Annals of Mathematics B,1982,3(3):395~402
Page view: 892        Net amount: 1185

Authors:

Wan Zhexian; Yang Jingen
Abstract: Let K be the skew field of rational quaternoions.Let R={(a+bi+cj+dk)/2|a,b,c,d =in Z and have the same parity},where Z denotes the ring of rational integers.R is a subring of K and K is the quotient skew field of R. R is usually called the ring of quaternion integers. Let E denote the subgroup of GL_2(R) generated by all elements of the form $[\left( {\begin{array}{*{20}{c}} 1&s\0&1 \end{array}} \right)\]$ and $[\left( {\begin{array}{*{20}{c}} 1&0\t&1 \end{array}} \right)\]$(s,t \in R).Denote the factor groups of GL_2(R) and E modules their centers,both of which are {\pm I},by PGL_2(R) and PE respectively.PE is the commutator subgroup of PGL_2(r). Theorem.Any automorphism of PGL_2(R) (or PE) is one of the following two standard forms $\bar A \mapsto \bar P{\bar A^\sigma }{\bar P^{ - 1}}$ $[A \mapsto \bar P{(\overline {{A^{\tau '}}} )^{ - 1}}{\bar P^{ - 1}}$ where $\bar P \in PGL_2(R)$,\sigma is an automorphism of R and \tau is an anti-automorphism of R.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持