2025年5月6日 星期二

 
The Generalized Riemann-Hilbert problem For a Multi-connected Region ofSecond Order Non-linear Elliptic Equations

Citation:

Li Mingzhong.The Generalized Riemann-Hilbert problem For a Multi-connected Region ofSecond Order Non-linear Elliptic Equations[J].Chinese Annals of Mathematics B,1982,3(5):645~654
Page view: 752        Net amount: 758

Authors:

Li Mingzhong;
Abstract: In this paper, we consider the generalized Riemann-Hilbert problem for second order non-linear elliptic complex equation $\frac{\partial ^2 w}{\partial \bar z ^2}=F(z,w,\frac{\partial w}{\partial \bar z},\frac{\partial w}{\partial z},\frac{\partial ^2 w}{\partial z \partial \bar z}),z\in G$(1) with the boundary condition $Re[z^-n_1e^-\pii\alpha_1(z)w]=r_1(z),Re[z^-n_2e^\pi i \alpha_2(z) \frac{\partial w}{\partial \bar z}]=r_2(z),z\in \Gamma$ where $\Gamma=\Gamma_0+\Gamma_1+\cdots+\Gamma_m$ is the smooth boundary of a multi-connected region G,$n_i(i=1,2)$ are called the indices of the boundary value problem. we also obtain the following existence theorem of generalized solution. Theorem, suppose that the indices $n_i>m-1$, the coefficients of the complex equation (1) and the boundary condition (2) satisftes the condition (c),and q^0 is sufficiently small, then the seneralized Riemann-Hilbert problem.(1), (2)is solvable and the solution has theexpression (7).

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持