On Applications of Vector Measure to the Optimal Control Theory for Distributed Parameter Systems

Citation:

Li Xunjing.On Applications of Vector Measure to the Optimal Control Theory for Distributed Parameter Systems[J].Chinese Annals of Mathematics B,1982,3(5):655~662
Page view: 844        Net amount: 906

Authors:

Li Xunjing;
Abstract: Let X and Z be two reflexive Banach spaces, U\in Z and b(\cdot,\cdot):[t_0,T]*U\rightarrow X continuous. Suppose $x(t)\equiv x(t,u(\cdot))$ is a function from [t_0, T] into X , satisfying the distrbnted parameter system $dx(t)\dt=A(t)x(t)+b(t,u(t)),t_0+\int_t_0^T {+r(t,u(t))dt}$. We have proved the following theorem. Theorem. Suppose u^*(\cdot) is the optimal control function, $x^*(t)=x(t,u^*(\cdot))$ and $\psi (t)=-U'(T,t)Q_1x^*(T)-\int_t^T{U'(\sigma,t)Q(\sigma)x^*(\sigma)d\sigma}$, then the maximum principle $<\psi(t),b(t,u^*(t))>-1/2r(t,u^*(t))=\mathop {\max }\limits_{u \in U} {\psi (t),b(t,u)>-1/2r(t,u)}$ (16) holds for almost all t on [t_0, T ].

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持