The Non-Existence of Limit Cycle of Some Quadratic Differential System

Citation:

Wang Mingshu,Lin Yingju.The Non-Existence of Limit Cycle of Some Quadratic Differential System[J].Chinese Annals of Mathematics B,1982,3(6):721~724
Page view: 813        Net amount: 956

Authors:

Wang Mingshu; Lin Yingju
Abstract: In this paper, we consider the system $\frac {dx}{dt}=-y+lx^2+5axy,\frac {dy}{dt}=x(1+ax+3ly)$ (1) which has a fine focus of -the third order O(0,0) . We prove the following Theorem. No limit cycle of system (1) can exist in the neighborhood of O(0,0). In fact, using a few transformations, we can change system (1) into the Van Der Pol's system $\frac{dx}{dt}=-y,\frac {dy}{dt}=-g(x)-f(x)y$(2) where $g(x)=x^-3(x-1)[3x(x+4)+\delta(6x-1)]$ $f(x)=-x^-2(x-1)(x+4),\delta=(5a^2-3l^2)/l^2$ Hence the problem of the existence or non-existence of limit oyole for system (1) around O changes into that for system (2) around (1, 0) . Again through Филиппов transformation, we arrive at the following system $\frac {dy}{dz}=\frac {1}{F_1(z)-y},\frac {dy}{dz}=\frac {1}{F_2(z)-y}$ where $\int_1^x {f(\xi)d \xi=F(x)=F_1(z),(x>1)}$ $\int_1^x {f(\xi)d \xi=F(x)=F_2(z),(0

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持