Quasi-Normal Structure and Fixed Point of Nonlinear Mappings

Citation:

Zhao Hanbin.Quasi-Normal Structure and Fixed Point of Nonlinear Mappings[J].Chinese Annals of Mathematics B,1982,3(6):779~788
Page view: 838        Net amount: 883

Authors:

Zhao Hanbin;
Abstract: Let (X,|| ||) be a Banach space. For $\Omega \subset X^*$ and $x\in X$ we introduce the following notations (p\geq 1 and n\in N) $|X|_{\Omega _p(n)}=sup{(\sum\limits_{f\in F} |f(x)|^p)^{1/p}:F \subset \Omega,|F|\leq n$ $|X|_{\Omega _\infty}=sup{|f(x)|:f\in \Omega}$ A convex subset E of X is said to have guasi-normal structure whenever there exists a norm 1 | on A which satisfies the following conditions; (i) E has norinal structure relative to the norm ||| |||. (ii) There exist $\Omega \subset X^*$, p\geq 1 and \theta \in (0,1], such that $|x|_{\Omega _p(2) \leq |||x||| \leq ||x||}$ for x\in E and |||x|||<||x|| implies $2^1/p |x|_\Omega_\infty \geq \theta ||x||+(1-\theta)|||x|||$ or (ii)' There exist \Omega \subset X^*,p\geq 1 and \alpha \in [1,4^1/p) such that for all x\in E, |x|_\Omega_\rho(4)\leq |||x|||,||x||=max{|||x|||,\alpha|x|_\Omega_\infty} and for any countable subset w of \Omega $sup{\sum\limits _{\delt\in w |f(x)|^p:x\in E}<+\infty$ We notice that a set with normal steucture must have quasi-normal structure and there exist sets without normal structure which quasi-normal structure. The main result of the present paper is as follows. Theorem. Let (X, || ||) be a Banach space, E a weak compact convex nonempty subset of X with quasi-normal structure. Let T be a mapping of E in to itself. If there exists a sequence {x_n} in any T-invariant convex subset of E such that $lim_{n\rightarrow \infty} ||x_n-x_n+1||=lim_{n\rightarrow \infty}||x_n-Tx_n||=0$ and $lim_{n\rightarrow \infty} ||y-x_n||=\delta(\bar co{x_n}),for y\in \bar co({c_n})$ limll2/-*?ll=3(coK}), for y€co({xa}), then the mapping T has a fixed point in E, In particular, if the mapping T satisfies $||Tx-Ty||\leq max{||x-y||,1/2(||x-Ty||+||y-Tx||)},for x,y\in E$ then the mapping T has a fixed point in E.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持