|
| |
The Estimation for the Multiple de la ValKe Poussin Square Remainders |
| |
Citation: |
Wang Kunyang.The Estimation for the Multiple de la ValKe Poussin Square Remainders[J].Chinese Annals of Mathematics B,1982,3(6):789~802 |
Page view: 862
Net amount: 644 |
Authors: |
Wang Kunyang; |
|
|
Abstract: |
Let Q_N={\bar x=(x_1,\cdots ,x_N)|-pi \leq x_i <\pi,i=1,\cdots,N} and X(Q_N) denote L(Q_N) and C(Q_N) , The square de la УаДбо Poussin sums of f\in X (Q_N) are defined by
$V_n^n+l(f;\bar x)=\frac{1}{\pi ^N}\int _Q_N f(\bar x+\bar t)\prod\limits_{i = 1}^N {(\frac{1}{{l + 1}}} \sum\limits_{v = n}^{n + l} {{D_v}({t_i}))d\bar t(n,l = 0,1,2, \cdots )}$
where D_v(t) =sin(v+1/2)t/2sint/2, - The differences $R_n,l(f;\bar x)=f(\bar x)-V_n^n+l(f;\bar x)$ are called square remainders. We denote by E_k(f)_X the best approximation of the function f\in X(Q_N) by N-multiple trigonometric polynomials of order K.
Theorem Let {\varepsilon _k}_k=0^\infty be a sequence such that \varepsilon _n \downarrow \infty(n\rightarrow \infty), the class $X(\varepsilon)={f\in X(Q_N)|E_k(f)_X \leq \varepsilon _k,k=0,1,2,\cdots}$ Then
$C_N^'\sum\limits_{v=0}^n+l \frac {\varepsilon_v+nln^N-1(3+v/(l+1))}{v+l+1}\leq sup_{f\in X(\varepsilon)||R_n,l(f)||_X\leq C_N \sum\limits_{v=0}^{n+l}\frac {\varepsilon _v+nln^N-1(3+v/l+1)}{v+l+1}$
where C_N>C'_N>0 are constants depending only on N. |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|