Singular Integrals in Several Complex Variables (II)------HadamardPrincipal Value on a Sphere

Citation:

Shi Jihuai,Gong Sheng.Singular Integrals in Several Complex Variables (II)------HadamardPrincipal Value on a Sphere[J].Chinese Annals of Mathematics B,1983,4(3):307~318
Page view: 915        Net amount: 590

Authors:

Shi Jihuai; Gong Sheng
Abstract: Hadamard introduced the concept of finite parts of divergent integrals, i.e. Hadamard principal value, when he researched the Cauchy problems of the hyperbolic type partial differential equations. In this paper,the authors try to generalize this concept to the singular integrals on a sphere of several complex variables space Cn. The Hadamard: principal value of higher order singular integral $\[\frac{1}{{{\omega _{2n - 1}}}}\int_{u\bar u'} {\frac{{f(u)\dot u}}{{{{(1 - v\bar u')}^{n + 1/2}}}}} \]$ is defined and the corresponding Plemelj formula is obtained.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持