Some Coneral Results on the First Boundry Value Problem forQuasiliear Degenerate Parabolic Equation

Citation:

Wu Zhuoqun,Zhao Junning.Some Coneral Results on the First Boundry Value Problem forQuasiliear Degenerate Parabolic Equation[J].Chinese Annals of Mathematics B,1983,4(3):319~328
Page view: 815        Net amount: 764

Authors:

Wu Zhuoqun; Zhao Junning
Abstract: In this paper, the authors investigate the first boundary value problem for equations of the form $\[Lu = \frac{{\partial u}}{{\partial t}} - \frac{\partial }{{\partial {x_i}}}({a^{ij}}(u,x,t)\frac{{\partial u}}{{\partial {x_j}}}) - \frac{{\partial {f^i}(u,x,t)}}{{\partial {x_i}}} = g(u,x,t)\]$ with $a^ij(u,x,t)\xi_i\xi_j\geq 0$ An existence theorem of solution in BV_1,1/2(Q_T) is proved. The principal condition is that there exists \delta>0 such that for any (x, t)\in Q_T,|u|\geq M $a^ij(u,x,t)\xi_i\xi_j-\delta\sum\limits_i,j=1^m(a_x^ij(u,x,t)\xi_i)^2\geq 0$

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持