The Existence of Almost periodic Solutions of Singularly Perturbed Systems

Citation:

Huang Yuanshi.The Existence of Almost periodic Solutions of Singularly Perturbed Systems[J].Chinese Annals of Mathematics B,1985,6(1):15~26
Page view: 737        Net amount: 727

Authors:

Huang Yuanshi;
Abstract: First the author considers the system (1)$\frac{dx}{dt}=f(t,x,y,\varepsilon),\varepsilon\frac{dy}{dt}=g(t,x,y,\varepsilon)$ and its degenerate system (2)$\frac{dx}{dt}=f(t,x, y, 0), g(f, x, y, 0) =0$. In both noncritical and critical cases, sufficient conditions are established for the existence of almost periodic solutions of system (1) near the given solutions of system (2). The main method of proof is that, by performing suitable transformation, the author establishes exponential dichotomies, and then applies the theory of integral manifolds. Secondly, for the autonomous system (3) $\frac{dx}{dt}=f(x,y,\varepsilon),\varepsilon\frac{dy}{dt}=g(x,y,\varepsilon)$, analogous results are obtained by performing the generalized normal coordinate transformation.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持