Oscillatory Property of n-th Order Functional Differential Equations

Citation:

George W. Johnson,Yan Jurang.Oscillatory Property of n-th Order Functional Differential Equations[J].Chinese Annals of Mathematics B,1985,6(1):47~52
Page view: 846        Net amount: 825

Authors:

George W. Johnson; Yan Jurang
Abstract: The authors study oscillatory property of nonlinear functional differential equation $L_nx(t)+p(t)f(x(t),x(g(t)))=r(t)$(1) where L_nx(t) is an n-th order linear differential operator defined by $L_0x(t)=x(t)$, $L_kx(t)=\frac{d}{dt}(a_k-1(t)L_k-1x(t)),k=1,2,\cdots,n.$ Sufficient conditions are obtained which guarantee that all continuable solutions of (1) are oscillatory or tend to zero as t\rightarrow \infinity.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持