Almost Periodic Solutions of Equation $[\dot x = {x^3} + \lambda g(t)x + \mu f(t)\]$ and Their Stability

Citation:

Jiang Dongping.Almost Periodic Solutions of Equation $[\dot x = {x^3} + \lambda g(t)x + \mu f(t)\]$ and Their Stability[J].Chinese Annals of Mathematics B,1985,6(2):185~198
Page view: 749        Net amount: 847

Authors:

Jiang Dongping;
Abstract: By using the Liapunov function and the contraction mapping principle, the author investigates the existence and stability of almost periodic solutions of the first order nonlinear equations $\frac{dx}{dt}=-h_1(x)+h_2(x)g(t)+f(t)$ and $\frac{dx}{dt}=r(t)x^n+\lambdag(t)x+\muf(t)$, where r(t), g(t), f(t) are given almost periodic functions, n(\geq 2) integer, and \lambda,\mu real parameters.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持