2025年5月10日 星期六

 
Global Smooth Solutions of Dissipative Boundary Value Problems for First Order Quasilinear Hyperbolic Systems

Citation:

Qin Tiehu.Global Smooth Solutions of Dissipative Boundary Value Problems for First Order Quasilinear Hyperbolic Systems[J].Chinese Annals of Mathematics B,1985,6(3):289~298
Page view: 918        Net amount: 889

Authors:

Qin Tiehu;
Abstract: This paper discusses the following initial-boundary value problems for the first order quasilinear hyperbolic systems: $\frac{\partial u}{\partial t}+A(u)\frac{\partial u}{\partial x}=0,$(1) $u^II=F(u^I),as x=0,$(2) $u^I=G(u^II),as x=L,$(3) $u=u^0(x),as t=0,$(4) where the boundary conditions (2), (3) satisfy F(0) =0, G(0)=0 and the dissipative conditions, that is, the spectral radii of matrices $B_1=\frac{\partial F}{\partial u^I}(0)\frac{\partial G}{\partial u^II(0)}$ and $B_2=\frac{\partial G}{\partial u^II(0)\frac{\partial F}{\partial u^I}(0)$ are less than unit. Under certain assumptions it is proved that the initial-boundary problem (1)—(4) admits a unique global smooth solution u(x,t)and theC^1-norm|u(t)|_\sigma^2 of u(x, t) decays exponentially to zero as t\rightarrrow \infinity provided that the C^I-norm|u^0|_\sigma^1 of the initial data is sufficiently small.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持