The Uniform Convergence Rate of Kernel Density Estimate

Citation:

Yang Zhenhai.The Uniform Convergence Rate of Kernel Density Estimate[J].Chinese Annals of Mathematics B,1985,6(3):335~344
Page view: 885        Net amount: 759

Authors:

Yang Zhenhai;
Abstract: In this paper, we study the uniform convergence rate of kernel density estimate [\hat f_n] and get optimal uniform rate of convergence without the assumption of compact support for kernel function. It is proved that if the density function f satisfies \lambda-condition and the kernel function K is \lambda-good (see section 1), then we have limsup(\frac{n}{log n})^{\lambda/(1+2\lambda)}sup|[\hat f_n](x)-f(x)|\leq const. a.s.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持