Asymptotic Representation for Remainder of Quasi-Hermite-Fejer Interpolation Polynomial

Citation:

Xie Tingfan.Asymptotic Representation for Remainder of Quasi-Hermite-Fejer Interpolation Polynomial[J].Chinese Annals of Mathematics B,1985,6(4):457~464
Page view: 854        Net amount: 844

Authors:

Xie Tingfan;
Abstract: Let Q_2n+1(f,x) be the quasi-Hermite-Fejer interpolation polynomial of function f(x)\in C_[-1,1] based on the zeros of the Chebyshev polynomial of the second kind U_m(x)=\frac{sin((n+1)arccosx)}{sin(arccosx)}.In this paper, the uniform asymptotic representation for the quantity |Q_2n+1(f,x)-f(x)| is given. A similar result for the Hermite-Fejer interpolation polynomial based on the zeros of the Chebyshev polynomial of tne first kind is also established.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持