2025年5月1日 星期四

 
Normal Extensions of Operators to Krein Spaces

Citation:

Wu jingbo.Normal Extensions of Operators to Krein Spaces[J].Chinese Annals of Mathematics B,1987,8(1):36~42
Page view: 915        Net amount: 1022

Authors:

Wu jingbo;
Abstract: In this paper, it is proved that every bounded linear operator on a Hilbert space has a normal extension to a Krein space. Two criteria for J-subnormality are given. In particular, in order that T be subnormal, it suffices that exp(-\bar \Lambda T^*)exp(\Lambda T) be a positive definite operator function on a bounded infinite subset of complex plane. This improves the condition of Bram [4]. Also it is proved that the local spectral subspaces are closed for J-subnormal operators.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持