The Higher Order Approximation of Solution of Quasilinear Second Order Systems for Singular Perturbation

Citation:

Lin Zongchi.The Higher Order Approximation of Solution of Quasilinear Second Order Systems for Singular Perturbation[J].Chinese Annals of Mathematics B,1987,8(3):357~363
Page view: 740        Net amount: 723

Authors:

Lin Zongchi;
Abstract: In this paper, using the theory of invariant region, the author considers the existence and the asymptotic behavior of solution of vector second order quasi-linear boundary value problem: $\epsilon y''=f(x,y,\epsilon)y'+g(x,y,\epsilon)$ $y(0,\epsilon)=A(\epsilon),y(1,\epsilon)=B(\epsilon)$ as the positive perturbation parameter e tends to zero, where y, g, A and B are vector-valued and f is a matrix function. Under the appropriate assumptions the author obtains, involving the boundary layer, uniformly valid asymptotic solution of higher order approximation.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持