Bifurcations of Limit Cycles Forming Compound Eyes in the Cubic System

Citation:

Li Jibin,Huang Qiming.Bifurcations of Limit Cycles Forming Compound Eyes in the Cubic System[J].Chinese Annals of Mathematics B,1987,8(4):391~403
Page view: 865        Net amount: 932

Authors:

Li Jibin; Huang Qiming
Abstract: Let H(n) be the maximal number of limit cycle of planar real polynomial differential system with the degree n and C_m^k denote the nest of k limit cycles enclosing m singular points.By computing detection functions, tne authors study bifurcation and phase diagrams in the class of a planar cubic disturbed Hamiltonian system.In particular, the following conclusion is reached: The planar cubic system(E_3) has 11 limit cycles, which form the pattern of compound eyes of C^1_9\supseteqq 2[C'_3\supseteqq (2C^2_1)] and have the symmetrical structure; so the Hilbert number H(3)\geq 11.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持