On the Upper Bound of the Number of Primes in Arithmetic Progression

Citation:

Yao Qi.On the Upper Bound of the Number of Primes in Arithmetic Progression[J].Chinese Annals of Mathematics B,1987,8(4):449~453
Page view: 792        Net amount: 647

Authors:

Yao Qi;
Abstract: Let a and q be relatively prime positive integers and \pi(x,q,a) stand for the number of primes p\leq x congruent to a and q. H. Iwanice proved that \pi(x;q,q)<\frac{(2+\varepsilon)x}{\phi(q)log D} for any \varepsilon>0, x>x_0 (\varepsilon) and q\leq x^9/20-\varepsilon , where D=xq^-3/8. The author applies an improved estimation of the error term in the linear sieve, proves that for any \varepsilon>0, x>x_0 (\varepsilon) and q\leq x^5/11-\varepsilon , (1) is true.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持