ASYMPTOTICALLY OPTIMAL EMPIRICAL BAYES ESTIMATION FOR PARAMETERS OF TWO-SIDED TRUNCATION DISTRIBUTION FAMILIES

Citation:

Wei Laisheng.ASYMPTOTICALLY OPTIMAL EMPIRICAL BAYES ESTIMATION FOR PARAMETERS OF TWO-SIDED TRUNCATION DISTRIBUTION FAMILIES[J].Chinese Annals of Mathematics B,1989,10(1):94~104
Page view: 820        Net amount: 699

Authors:

Wei Laisheng;

Foundation:

Projects supported by the Science Fund of the Chinese Academy of Sciences.
Abstract: Consider the two-sided truncation distrbution families written in the form $$\[f(x,\theta )dx = \omega ({\theta _1},{\theta _2})h(x){I_{[{\theta _1},{\theta _2}]}}(x)dx,\theta = ({\theta _1},{\theta _2}).\]$$ $$\[T(x) = ({t_1}(x),{t_2}(x)) = (\min ({x_1}, \cdots {x_m}),\max ({x_1}, \cdots {x_m}))\]$$ is a sufficient statistic and its marginal density is denoted by $\[f(t)d{\mu ^T}\]$. The prior distribution of $\[\theta \]$ belongs to the family $$\[F = \{ G:{\int {\int {\left\| \theta \right\|} } ^2}dG(\theta ) < \infty \} \]$$ In this paper, the author constructs the empirical Bayes estimator (EBE) of $\[\theta \]$, $\[{\phi _n}(t)\]$, by using the kernel estimation of $\[f(t)\]$. Under a quite general assumption imposed upon $\[f(t)\]$ and $\[h(x)\]$, it is shown that $\[{\phi _n}(t)\]$ is an asymptotically optimal EBE of $\[\theta \]$.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持