OSCILLATORY AND ASYMPTOTIC BEHAVIOUR OF n ORDER NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

Citation:

Yuan Jiong.OSCILLATORY AND ASYMPTOTIC BEHAVIOUR OF n ORDER NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS[J].Chinese Annals of Mathematics B,1989,10(2):143~153
Page view: 839        Net amount: 759

Authors:

Yuan Jiong;
Abstract: This paper considers oscillatory and asymptotic behaviour of following n order neutra 少了 functional differential equation: $$\[\frac{{{d^n}}}{{d{t^n}}}[x(t) - cx(t - \tau )] + {( - 1)^{n - 1}}\int_{{ - \tau^*} }^0 {x(t + \theta )d\eta (\theta )} = 0,\begin{array}{*{20}{c}} {}&{(1)} \end{array}\]$$ where $\[\tau > 0,{\tau ^*} > 0,1 > c \ge 0,\eta (\theta )\]$ is nondecreasing function with bounded variation on $\[[ - {\tau ^*},0]\]$. In this paper the author obtains some results for any integer n and $\[c \in [0,1]\]$. Where c=0 or n=l, these results coincide with the results in G. Ladas's paper [4] and the author's papers [1, 2].

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持