ON THE GROWTH OF SOME RANDOM HYPERDIRICHLET SERIES

Citation:

Liu Quan-sheng.ON THE GROWTH OF SOME RANDOM HYPERDIRICHLET SERIES[J].Chinese Annals of Mathematics B,1989,10(2):214~220
Page view: 1029        Net amount: 790

Authors:

Liu Quan-sheng;

Foundation:

Partially supported by the National Science Foundation of P. B. 0.
Abstract: The paper considers the random L-Dirichlet series $$\[f(s,w) = \sum\limits_{n = 1}^\infty {{P_n}(s,w)\exp ( - {\lambda _n}s)} \]$$ and the random B-Dirichlet series $$\[{\varphi _{{\tau _0}}}(s,w) = \sum\limits_{n = 1}^\infty {{P_n}(\sigma + i{\tau _0},w)\exp ( - {\lambda _n}s)} \]$$ where ${\[{{\lambda _n}}\]}$ is a sequence of positive numbers tending strictly monotonically to infinity,$\[{\tau _0} \in R\]$ is a fixed real number, and $$\[{P_n}(s,w) = \sum\limits_{j = 0}^{{m_n}} {{\varepsilon _{nj}}{a_{nj}}{s^j}} \]$$ a random complex polynomial of order $\[{m_n}\]$, with ${\[{\varepsilon _{nj}}\]}$ denoting a Rademacher sequence and $\[\{ {a_{nj}}\} \]$ a sequence of complex constants. It is shown here that under certain very general conditions, almost all the random entire functions $\[f(s,w)\]$ and $\[{\varphi _{{\tau _0}}}(s,w)\]$ have, in every horizontal strip, tke same order, given by $$\[\rho = \lim \sup \frac{{{\lambda _n}\log {\lambda _n}}}{{\log A_n^{ - 1}}}\]$$ where $$\[{A_n} = \mathop {\max }\limits_{0 \le j \le {m_n}} \left| {{a_{nj}}} \right|\]$$ Similar results are given if the Rademacber sequence $\[\{ {\varepsilon _{nj}}\} \]$ is replaced by a steinhaus seqence or a complex normal sequence.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持