THE DIRICHLET PROBLEM FOR DIFFUSION EQUATION

Citation:

Li Zhichan,Yang Qingji.THE DIRICHLET PROBLEM FOR DIFFUSION EQUATION[J].Chinese Annals of Mathematics B,1989,10(3):301~311
Page view: 881        Net amount: 825

Authors:

Li Zhichan; Yang Qingji
Abstract: Let $D$ be a bounded domain in the $d+1$-dimensional Euclidean space $\[{R^{d + 1}}\]$. This paper aims at giving a probabilistic treatment of the Dirichlet problem for the following diffusion equation on D $$\[(1/2\Delta + q)u(x,t) = \frac{\partial }{{\partial t}}u(x,t),(x,t) \in D\]$$ where $q$ is a function to be specified later and $\[\Delta \]$ is the Laplace operator $\[\sum\limits_{i = 1}^d {\frac{{{\partial ^2}}}{{\partial x_i^2}}} \]$. The existence and uniqueness theorems are given, and furthermore, the probabilistic representation and martingale charaeteristion of the solutions for diffusion equations are obtained.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持