ON INNER$\[{\pi ^'}\]$-CLOSED GROUPS AND NORMAL$\[{\pi}\]$-COMPLEMENTS

Citation:

Wang Xiaofong.ON INNER$\[{\pi ^'}\]$-CLOSED GROUPS AND NORMAL$\[{\pi}\]$-COMPLEMENTS[J].Chinese Annals of Mathematics B,1989,10(3):323~331
Page view: 851        Net amount: 886

Authors:

Wang Xiaofong;
Abstract: In this paper, the author classifies the finite inner $\[{\pi ^'}\]$-closed groups, and proves the following results 1.If each proper subgroup $K$ of a group $G$ is weak $\[{\pi }\]$-homogeneous and weak $\[{\pi ^'}\]$-homogeneous, then $G$ is a Schmidt group, or a direct product of two Hall cubgroups. 2.If $G$ is a weak $\[{\pi }\]$-homogeneous group, then $G$ is $\[{\pi }\]$-closed if one of the following statements is true: (l)Each $\[{\pi }\]$-subgroup of $G$ is 2-closed. (2)Eaqh $\[{\pi }\]$-subgroup of $G$ is 2'-closed. 3. Let $G$ be a group and $\[{\pi }\]$ be a set of odd primes. If $\[{N_G}(Z(J(P)))\]$ has a normal $\[{\pi }\]$-completement for a 16w Sylow p-subgroup of G with prime p in $\[{\pi }\]$, then so does $G$.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持